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Terminology

decision tree a bunch of if-statements which in the end returns -1 or +1
(obtained by machine learning in our case)

node the nodes of a tree (return- and if-statements)
leaf end nodes of a tree (the return statement)
decision forest a collection of decision trees

boosted decision tree a decision forest
(where the machine learning was “boosted”)
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outline

@ decision trees
@ decision forests

mainly adaptive boosted decision trees
© BDTs in practice

applicable to other MVAs as well
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a decision tree example

if (x; > ¢1) {
if (x; > ¢2) {
return -1; Root
} else { node

T~
return +1; xi > cl xi < cl

} e ~
} else {
if (x; > c3) { N N
a Xj>c2 xj<c2 Xj>c3 xj<c3
if (Xk > C4).{ J he I N
return -1;
} else { B 5 5
return +1; /\

xk >c4 xk<ch

} y \
} else { B S
return +1;

}
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how to get a decision tree

several ways to get a decision tree

@ write your selection as decision tree
(scnr)
@ use machine learning on MC events

@ split the sample in two by means of a cut

@ develope a new cut on each of the two resulting samples

© repeat until you end up with 2" samples with 1 event each
(always possible except when there is a signal event identical to a
background event)

©Q possibly others
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properties of decision trees

con

@ decisions are based on
statistical fluctuations in
training sample
aka overtraining

warning

Wikipedia uses the term overfitting, TMVA and most people in
LHCb use overtraining.

pro
@ relatively understandable

@ 100% correct on training
sample
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interlude: overtraining

@ the machine learning didn’t pick up actual signal/background
properties, but statistical fluctuations
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interlude: overtraining

@ the machine learning didn’t pick up actual signal/background
properties, but statistical fluctuations

3rd March 2014 7/15



interlude: overtraining

error rate [a.u.]

@ the machine learning didn’t pick up actual signal/background
properties, but statistical fluctuations

@ performance of a classifier becomes better on the training sample
(the algorithm learns more) while the actual performance
becomes worse and worse in reality

actual performance this is generic

/ not a property of DT.
happens to BDT, NN, ... as
well

p

performance on
training sample

S -
Overtraining!

learning (e.g. tree depth)
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interlude: overtraining

@ yes, no, maybe, it depends!
X in general an overtrained classifier performes worse than it could

X performance estimates from the training sample overestimate
classifier performance
— you shouldn’t use the training sample for this anyhow!
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' fighting overtrained decision trees

warning

Wikipedia knows pre-pruning and post-pruning.
Wikipedia-post-pruning = TMVA-pruning.
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fighting overtrained decision trees

@ cut away nodes without significance

(pruning)
v optimal for decision trees Root

node
X bad for decision forests
@ don’t create nodes w/o significance in

xi > cl xi <cl

the first place N N

X chess board counter example! AN N
@ limit height of the tree ° ° vat °

X fundamentally limits performance of e

decision trees B s

v found optimal for decision forests

@ minimum number of events for node
creation
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ow to do the splits

@ for a fully grown decision tree, random cuts work fine
BUT: pruning doesn’t work with random cuts

o find the cut-variable and cut-value with the best separation
v sounds good
X how is “best separation” defined? (give me a FoM)

@ luckily most FoMs agree (next slide)
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NN
Separation Gain

® What do we mean by “best separation gain”?
" define a measure on how mixed S and B in a node are:
® Gini-index: (Corrado Gini 1912, typically used to measure income inequality)
p (1-p) : p=purity g
® Cross Entropy: 0sf o
(pInp + (1-p)in(1-p)) 7

® Misidentification:

N

o
=

1-max(p,1-p) o

~
\
|

\

cross entropy \
Gini index
—— misidentification

0..

=
N

= difference in the various indices are small, 0af

most commonly used: Gini-index

01 02 03 04 05 06 07 08 09 1
purity
: ine *ini e *(iAi
separation gain: e.g. NParent GmIParent - Nleft GInILeftNode - Nright GmIRightNode

® Choose amongst all possible variables and cut values the one that maximised the this.

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 — Multivariate Data Analysis and Machine Learning
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parameter

(0

notes on FoMs

@ smooth FoMs are better for weighted events
I'important for boosting

@ should be fast to compute
i.e. entropy = bad

nCuts controls how many cut values are tested when creating a node
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the chess board example
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the chess board example

N
S
%15

Signal
Background
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o
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@ the first cut won’t be significant
(pick up fluctuations!)

P IR T R A

var1
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the chess board example

. 3 - Signal
' Background

var2
-
(3]
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@ the first cut won’t be significant
(pick up fluctuations!)

@ the second cut will be good 08
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— onto part 2

lustiges bild hier
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boosted decision trees
part 2: decision forests / boosted decision trees
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decision trees and correlations

varl
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@ decision trees are really
bad at linear correlations
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@ decision trees are really
bad at linear correlations

@ e.g. tree depth=4 and still
edges wrong
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decision trees and correlations

4

varl

[%)

@ decision trees are really
bad at linear correlations

@ e.g. tree depth=4 and still
edges wrong

@ large tree needed to model
steps
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decision forests

@ alternatively: average
different decision trees

b K 4o L m w
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decision forests

@ alternatively: average
different decision trees
@ combination not binary
here:
o definitively signal
e probably background
o definitively
background
@ three trees w/ depth=2
same resolution as
one tree w/ depth=6

I
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decision forests

alternatively: average
different decision trees
combination not binary
here:

o definitively signal

e probably background

o definitively

background

three trees w/ depth=2
same resolution as
one tree w/ depth=6

BUT: less vulnerable to
overtraining
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how to get different trees?
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Random trees

@ split training sample into random subsamples
@ train a decision tree on each of them
@ average all trees
— individual trees will be different due to fluctuations
— averaging of trees averages the training fluctuations out
= combined performance driven by actual properties of the data
(e.g. physics)
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can you do better than just randomising?
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Yes you can! (Boosting)

Attempt to make a power series (most significant tree first)
Boosting

classifier
AR — o, )
1re-weight
. classifier
Weighted Sample i chi(x)
lre-weight

. classifier
Weighted Sample =~ —> CA(x)

1 re-weight B Nejassifier oo
. classifier Y(X) . Z Wi (X)
Weighted Sample —_— COX) i

1 re-weight

v
classifier
CM(x)

Weighted Sample —
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Boosting

@ train first tree on the normal, full MC sample
— this tree will be as as correct as a single tree can be
@ train a second tree to correct the errors of the first tree:

o give lower weight to events which have been classified correctly
o give higher weight to events which have been classified wrongly

@ train third tree to correct the errors of the first two trees
o jterate
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AdaBoost: A simple demonstration

The example: (somewhat artificial...but nice for demonstration) : ,
 Data file with three “bumps”
« Weak classifier (i.e. one single simple “cut” « decision tree stumps )

‘ var(i) > x ‘ ‘ var(i) <= x ‘

®

Signal
Background

Normalised
Normalised

2
s
=
A
g
g
s
)
=

02

04

06

“-II.G 04 02 0 02 04 08 08
varl

Il
15
var0

Two reasonable cuts: a) Var0 > 0.5 > €g,,=66% &,y = 0% misclassified events in total 16.5%
or
b) Var0 < -0.5 > &44n5=33% €, = 0% misclassified events in total 33%

the training of a single decision tree stump will find “cut a)”

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 — Multivariate Data Analysis and Machine Learning
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NN
AdaBoost: A simple demonstration

The first “tree”, choosing cut a) will give an error fraction: err = 0.165
before building the next “tree”: weight wrong classified training events by (1-err)/err= 5
the next “tree” sees essentially the following data sample:

] E 2.5 Signal
< re-weight .=E. 777 Backg| .. and hence will
5 $ j chose: “cutb)”:
Var0 <-0.5
 I—
0-15-14500 1 15
var0 var0

K HEDT signal ! ! ! !

E 100 [T~ Background

=

The combined classifier: Tree1 + Tree2

the (weighted) average of the response to o[- §
a test event from both trees is able to P 15
separate signal from background as ;5
good as one would expect from the most ~ *° | i g
powerful classifier ol = =5 o - 0

Graduierten-Kolleg, Freibi
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he last tree

From this example it should be clear that the last tree performes worse
than the first tree!

the last tree will do almost everything wrong

@ weights have nothing to do with your actual data anymore

@ weighted signal and weighted background will look almost
identical

@ last tree tries to separate those events which are unseparable
@ last tree will not remove any easy removable background

I the last tree is only relevant for those events where all other trees
have no clue what to do
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Adaptive Boosting (AdaBoost)

© Traning Sample ———
l re-weight
Weighted Sample e
l re-weight
Weighted Sample s
l re-weight
Weighted Sample —
1 re-weight
;
Weighted Sample ——

Helge Voss

classifier
COX(x)

classifier
C(1)(X)

classifier
Cc@(x)

classifier
CBX(x)

classifier
Cm(x)

>

J

Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 — Multivariate Data Analysis and Machine Learning

® AdaBoost re-weights events
misclassified by previous classifier by:

1-

ferr

with :
err

_ misclassified events
all events

err

® AdaBoost weights the classifiers also
using the error rate of the individual
classifier according to:

Nejassifier 1—f (i) .
yx)= X log[%]c"’(X)

13
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final words on BDTs

@ learning speed can be manipulated (AdaBoostBeta)

8
1 —_ ferr 1 —_ ferr
ferr _> ( ferr )

@ leaves as training parameters:
@ number of trees
AdaBoostBeta
o tree depth
o MinNodeSize
@ nCuts
@ can be optimised automatically with
factory->OptimizeAllMethods ("SigEffAtBkgEf£f001", "FitGA") ;
factory->OptimizeAllMethods ("ROCIntegral", "Scan");

I keep in mind that this turns your test sample into a training sample
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— on to part 3 or not

lustiges bild hier

Paul Seyfert (Uni Heidelberg) 3rd March 2014 14/14



