boosted decision trees

part 1: decision trees

Paul Seyfert

Heidelberg University

3rd March 2014

decision tree a bunch of if-statements which in the end returns -1 or +1 (obtained by machine learning in our case) node the nodes of a tree (return- and if-statements) leaf end nodes of a tree (the return statement) decision forest a collection of decision trees boosted decision tree a decision forest (where the machine learning was "boosted")

outline

- decision forests mainly adaptive boosted decision trees
- BDTs in practice applicable to other MVAs as well

a decision tree example

```
if (x_i > c_1) {
  if (x_i > c_2) {
     return -1;
  } else {
     return +1;
} else {
  if (x_i > c_3) {
     if (x_k > c_4) {
        return -1;
     } else {
        return +1;
  } else {
     return +1;
```


how to get a decision tree

several ways to get a decision tree

- write your selection as decision tree (scnr)
- use machine learning on MC events
 - split the sample in two by means of a cut
 - 2 develope a new cut on each of the two resulting samples
 - repeat until you end up with 2ⁿ samples with 1 event each (always possible except when there is a signal event identical to a background event)

ossibly others

properties of decision trees

pro

- relatively understandable
- 100% correct on training sample

con

 decisions are based on statistical fluctuations in training sample aka overtraining

warning

Wikipedia uses the term overfitting, TMVA and most people in LHCb use overtraining.

definition

• the machine learning didn't pick up actual signal/background properties, but statistical fluctuations

definition

• the machine learning didn't pick up actual signal/background properties, but statistical fluctuations

definition

- the machine learning didn't pick up actual signal/background properties, but statistical fluctuations
- performance of a classifier becomes better on the training sample (the algorithm learns more) while the actual performance becomes worse and worse in reality

is it bad?

- yes, no, maybe, it depends!
- × in general an overtrained classifier performes worse than it could
- > performance estimates from the training sample overestimate classifier performance
 - \rightarrow you shouldn't use the training sample for this anyhow!

fighting overtrained decision trees

warning

Wikipedia knows pre-pruning and post-pruning. Wikipedia-post-pruning = TMVA-pruning.

fighting overtrained decision trees

- cut away nodes without significance (pruning)
 - \checkmark optimal for decision trees
 - X bad for decision forests
- don't create nodes w/o significance in the first place
 x chess board counter example!
- limit height of the tree
 X fundamentally limits performance of decision trees
 - \checkmark found optimal for decision forests
- minimum number of events for node creation

how to do the splits

- for a fully grown decision tree, random cuts work fine BUT: pruning doesn't work with random cuts
- find the cut-variable and cut-value with the best separation
 √ sounds good
 - X how is "best separation" defined? (give me a FoM)
- luckily most FoMs agree (next slide)

Separation Gain

What do we mean by "best separation gain"?

define a measure on how mixed S and B in a node are:

- Gini-index: (Corrado Gini 1912, typically used to measure income inequality)
 - p (1-p) : p=purity
- Cross Entropy:

-(plnp + (1-p)ln(1-p))

Misidentification:

1-max(p,1-p)

 difference in the various indices are small, most commonly used: Gini-index

separation gain: e.g. $N_{Parent}^*Gini_{Parent} - N_{left}^*Gini_{LeftNode} - N_{right}^*Gini_{RightNode}$

Choose amongst all possible variables and cut values the one that maximised the this.

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 — Multivariate Data Analysis and Machine Learning 9 Paul Sevfert (Uni Heidelberg) BDT 3rd March 2014 12/15

notes on FoMs

smooth FoMs are better for weighted events ! important for boosting

- should be fast to compute
 - i.e. entropy = bad

parameter

 ${\tt nCuts}$ controls how many cut values are tested when creating a node

the chess board example

the chess board example

• the first cut won't be significant (pick up fluctuations!)

the chess board example

- the first cut won't be significant (pick up fluctuations!)
- the second cut will be good

lustiges bild hier

boosted decision trees part 2: decision forests / boosted decision trees

Paul Seyfert

Heidelberg University

3rd March 2014

decision trees and correlations

 decision trees are really bad at linear correlations

decision trees and correlations

- decision trees are really bad at linear correlations
- e.g. tree depth=4 and still edges wrong

decision trees and correlations

- decision trees are really bad at linear correlations
- e.g. tree depth=4 and still edges wrong
- large tree needed to model steps

decision forests

 alternatively: average different decision trees

decision forests

- alternatively: average different decision trees
- combination not binary here:
 - definitively signal
 - probably background
 - definitively background
- three trees w/ depth=2 same resolution as one tree w/ depth=6

decision forests

- alternatively: average different decision trees
- combination not binary here:
 - definitively signal
 - probably background
 - definitively background
- three trees w/ depth=2 same resolution as one tree w/ depth=6
- BUT: less vulnerable to overtraining

how to get different trees?

Random trees

- split training sample into random subsamples
- train a decision tree on each of them
- average all trees
- \rightarrow individual trees will be different due to fluctuations
- ightarrow averaging of trees averages the training fluctuations out
- ⇒ combined performance driven by actual properties of the data (e.g. physics)

can you do better than just randomising?

Yes you can! (Boosting)

Attempt to make a power series (most significant tree first)

Boosting

LHCD

- train first tree on the normal, full MC sample
 → this tree will be as as correct as a single tree can be
- train a second tree to correct the errors of the first tree:
 - give lower weight to events which have been classified correctly
 - give higher weight to events which have been classified wrongly
- train third tree to correct the errors of the first two trees
- iterate

AdaBoost: A simple demonstration

or b) Var0 < -0.5 $\rightarrow \epsilon_{signal}$ =33% $\epsilon_{bkg} \approx 0\%$ misclassified events in total 33%

інсь

the training of a single decision tree stump will find "cut a)"

 Heige Voss
 Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009
 – Multivariate Data Analysis and Machine Learning
 15

 Paul Seyfert (Uni Heidelberg)
 BDT
 3rd March 2014
 9 / 14

AdaBoost: A simple demonstration

The first "tree", choosing cut a) will give an error fraction: err = 0.165

before building the next "tree": weight wrong classified training events by $(1-err)/err \approx 5$ the next "tree" sees essentially the following data sample:

Signal 2.5 Vormalis and hence will Background chose: "cut b)": Var0 < -0.5 1.5 0.5 -1.5 -1 -0.5 0.5 0 1.5 var0 Signal Normaliz 100 Background 80 60 156(0.0.0.0) 40 S,B): 20 0 -0.5 -0.4 -0.2 BDT response

The combined classifier: Tree1 + Tree2 the (weighted) average of the response to a test event from both trees is able to separate signal from background as good as one would expect from the most powerful classifier

Helge Voss

s Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 — Multivariate Data Analysis and Machine Learning

LHCD

From this example it should be clear that the last tree performes worse than the first tree!

the last tree will do almost everything wrong

- weights have nothing to do with your actual data anymore
- weighted signal and weighted background will look almost identical
- last tree tries to separate those events which are unseparable
- last tree will not remove any easy removable background
- ! the last tree is only relevant for those events where all other trees have no clue what to do

Adaptive Boosting (AdaBoost)

 AdaBoost re-weights events misclassified by previous classifier by:

$$\frac{1 - f_{err}}{f_{err}} \text{ with :}$$

$$f_{err} = \frac{\text{misclassified events}}{\text{all events}}$$

 AdaBoost weights the classifiers also using the error rate of the individual classifier according to:

$$y(x) = \sum_{i}^{N_{Classifier}} log\left(\frac{1-f_{err}^{(i)}}{f_{err}^{(i)}}\right) C^{(i)}(x)$$

Helge Voss Graduierten-Kolleg, Freiburg, 11.-15. Mai 2009 — Multivariate Data Analysis and Machine Learning 1

LHCD

final words on BDTs

learning speed can be manipulated (AdaBoostBeta)

$$rac{1-f_{\mathsf{err}}}{f_{\mathsf{err}}}
ightarrow \left(rac{1-f_{\mathsf{err}}}{f_{\mathsf{err}}}
ight)^eta$$

leaves as training parameters:

- number of trees
- AdaBoostBeta
- tree depth
- MinNodeSize
- nCuts

can be optimised automatically with

factory->OptimizeAllMethods("SigEffAtBkgEff001","FitGA");

factory->OptimizeAllMethods("ROCIntegral", "Scan");

! keep in mind that this turns your test sample into a training sample

lustiges bild hier

